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Failure of chaos control
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Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

~Received 4 May 2000!

We study the control of chaos in an experiment on a parametrically excited pendulum whose excitation
mechanism is not perfect. This imperfection leads to a weakly excited degree of freedom with an associated
small eigenvalue. Although the state of the pendulum could be characterized well and although the perturbation
is weak, we fail to control chaos. From a numerical model we learn that the small eigenvalue cannot be ignored
when attempting control. However, the estimate of this eigenvalue from an~experimental! time series is
elusive. The reason is that points in an experimental time series are distributed according to the natural
measure. It is this extremely uneven distribution of points that thwarts attempts to measure eigenvalues that are
very different. Another consequence of the phase-space distribution of points for control is the occurrence of
logarithmic-oscillations in the waiting time before control can be attempted. We come to the conclusion that
chaos needs to be destroyed before the information needed for its control can be obtained.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

In the past few years the control of chaos has evolved
a very actively pursued application of nonlinear dynami
Chaos is full of unstable periodic orbits which visit pha
space in a huge variety of ways and which have periods
almost any length. When given enough time, a chaotic
jectory will pass arbitrarily close to each of them. The k
idea by Ott, Grebogi, and Yorke@1# is that it can be steere
onto the unstable periodic point when it is close enough
ing modulation of a system parameter. The magnitude
these modulations must be sufficient to capture the sys
into a periodic orbit when it is near, but can decrease
almost zero when the system is exactly on the orbit.

A central notion is that all needed information can
learned from an experimental time series of measurem
on the chaotic system. It is not even necessary to perfor
complete measurement of the system’s phase space, as
bedding techniques@2# can be used to reconstruct the pha
space from a measurement of a single~scalar! component.
This information can be used to trace the location of unsta
periodic orbits, and to deduce the dynamics of their lo
linear neighborhoods. Thus, chaotic dynamics of any lo
dimensional system can be turned into the regular motion
choice without detailed knowledge of the dynamical syst
and using parameter modulations that are just large eno
to overcome the intrinsic noise of the system and the m
surement. This exciting idea motivated the present work

We have tried to control chaos in an experiment o
parametrically excited pendulum, but failed. On the oth
hand, there are numerous reports of successful chaos co
@4–7#. Our failure was also surprising because we were a
to precisely characterize the chaotic state and found v
favorable agreement with a faithful numerical simulation@3#.
The failure of this experiment made us consider carefully
ideas of controlling chaos.

Analysis of the experiment revealed that an extra mode
motion exists that is related to a weak interaction of
pendulum with its driving. As the associated eigenvalue
small, this mode is stiff and adjusts quickly to the state of
pendulum. In a numerical model we quantify this interacti
PRE 621063-651X/2000/62~5!/6398~11!/$15.00
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through a dynamical invariant. The strength of the inter
tion and, therefore, the importance of the parasitic mode
set by a single parameter in our numerical simulation. F
most parameter settings, dynamical invariants of the sys
are not affected by this mode. It is, therefore, dynamica
irrelevant most of the time. Still, it has a dramatic influen
on the possibility of controlling the system. Thus, to desi
the control strategy, the associated small eigenvalue mus
known.

If no other information is available in an experiment, th
linear neighborhood of an unstable periodic point must
learned from an experimental time series. The points t
happen to be close to the unstable periodic point can be u
in a least-squares analysis to determine the local linear
namics near the unstable periodic point. In our case, the
sociated matrix has both large and small eigenvalues. In
registered time series the points are distributed accordin
the natural measure. It was already noted in@8,9# that this
hinders an accurate estimate of the eigenvalues. In
present paper we quantify this error amplification by intr
ducing a condition number which exhibits interesting scal
behavior. For the perturbed pendulum this number is so la
that it becomes impossible to learn the needed informa
from a time series, even in the absence of noise.

Control of chaos separates into two distinct problems. T
first one is how to modulate the system parameter, given
linear environment of the unstable periodic point whose s
bilization is sought. This problem is entirely within the real
of control theory, and a plethora of techniques exists to so
it @10#. A perhaps more interesting aspect is related to
structure of phase space of chaotic nonlinear systems:
question here is which unstable periodic points exist, a
how long one has to wait before a chaotic orbit comes cl
enough to a periodic point and control can become effect
As we found, a third question is how chaos affects the e
mate of the dynamics in small neighborhoods of unsta
periodic points. In our experiment the necessity for cons
ering small eigenvalues for control is rooted in control en
neering, but the impossibility of measuring them is related
the structure of phase space.

In Sec. II we will describe the experiment and formulate
6398 ©2000 The American Physical Society
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PRE 62 6399FAILURE OF CHAOS CONTROL
model differential equation for the weak interaction of t
pendulum with its drive. Next, we will analyze dynamic
invariants as a function of the parameter that controls
strength of the interaction. For most values of this parame
the mode associated with the perturbation is very weak
the question is if chaos control can be achieved while ign
ing this mode. In Sec. IV we give the control matrix for th
approach, and conclude that such control will not work u
less the extra mode is very weak. In Sec. V we discuss
least-squares estimate of this mode and the adverse effe
the structure of the natural measure on the errors of suc
estimate. In Sec. VI we analyze the average waiting ti
before control can become effective as a function of
maximum control action. Both this waiting time and the e
ror amplification reflect the Cantor-like structure of the na
ral measure. We conclude that chaos must be destroyed
fore we can learn the information needed for controlling

II. PARAMETRIC PENDULUM

The parametric pendulum is a nonlinear system wh
features a chaotic state whose basin of attraction occup
large portion of phase space. It thus is ideally suited to stu
ing control of chaos.

A schematic view of the experiment is shown in Fig.
The pendulum is a massless rod of 0.317 m length, endin
a bob with an effective weight of 0.0858 kg. Its angu
positionf can be read using a 12 bit encoder. Aḟ velocity
measurement is done by finite difference. The support of
pendulum is oscillated vertically with frequencyV using a
crank mechanism. A true Poincare´ section is obtained by
readingf andḟ when the support of the pendulum is in i
highest position.

FIG. 1. The parametric pendulum, drawn to scale; its heigh
1.38 m. A bob with an effective mass ofm50.0858 kg is attached
to a rod ofl 50.317 m length and negligible mass. The anglef is
read with help of a 12 bit optical encoder. The suspension ha
massms of 0.5 kg. It is driven with a driving rod with lengthl c

50.75 m and a crank with armA50.13 m and moment of inertia
I c50.08 kg m2. The damping constants of the pendulum used
Eq. ~1! are k150, k250.056 39 s21, and k350.022 09. The two
anglesf anda are the dynamical variables.
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The (f,ḟ)dynamical state of the pendulum is describ
by the equation of motion

f̈1
k1

ml2
sgn~ḟ !1

k2

ml2
ḟ1

k3

ml2
~ḟ !2 sgn~ḟ !

1H v0
22

G~ t !

l J sin~f!50, ~1!

wherev05(g/ l )1/2 is the eigenfrequency of the pendulum
The acceleration of the pendulum suspensionG(t) is propor-
tional to cos(Vt), but the crank mechanism used contribut
higher harmonics

G~ t !5AH cos~Vt !1e
cos~2Vt !1e2 sin4~Vt !

@12e2 sin~Vt !#3/2 J V2, ~2!

whereA is the length of the driving arm of the crank mech
nism ande is the ratio ofA to the length of the other arm
The damping constantsk1 –3 were determined experimen
tally. The presence of the Coulomb friction term~propor-
tional to k1) is essential for the asymptotic state of the pe
dulum. It gives rise to a small island of stability at the orig
of the (f,ḟ)phase plane which lies in a sea of chaos. A
consequence, all chaos is transient, although these trans
may last several hours. A slight complication of the Co
lomb friction is that the pendulum may become stuck near
downward position and may be shaken loose again at a
instant during one excitation cycle. Our numerical proced
adequately handles these complications, but in order to a
restarting the integration while generating long time ser
we performed all numerical simulations with the Coulom
friction coefficient set to zero. As our interest is in a faithf
numerical simulation of the experiment, we care about th
details. They are, however, not relevant for our conclusio

In our experiments, the vertical oscillatory motion of th
support of the pendulum is driven by a crank mechani
using a 1 kW motor with tachogenerator feedback. Th
feedback mechanism is not perfect and the angular velo
of the crank varies approximately by 5%. Clearly, the fee
back mechanism cannot cope perfectly with the varying lo
exerted by the chaotically swinging pendulum. As mention
in the Introduction, this imperfection has dramatic cons
quences for the controllability of unstable periodic orbits.
order to understand this, let us introduce a version of
pendulum model that faithfully mimics the nonidealities
the experiment. We will do that by extending Eq.~1! with a
differential equation for the angular velocity feedback.

Let us call the angular velocity of the driving crankȧ. In
the nonideal experiment,ȧ is not a constant, but will vary
due to the fluctuating load of the chaotically swinging pe
dulum. It is in this way that the pendulum interacts with
environment. A simple model for the driving feedbac
mechanism is

I cä52M ~f,ḟ,f̈,a!1Kp~V2ȧ !1Kdä, ~3!

whereI c is the moment of inertia of the crank andM is the
torque that is exerted by the pendulum and its suspensio
the driving crank, which depends on the dynamical st

s
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6400 PRE 62WILLEM van de WATER AND JOHN de WEGER
(f,ḟ); it is specified below. In the feedback mechanis
Kp(V2ȧ)1Kdä, V is the set frequency,Kp is the propor-
tional feedback constant, andKd is the integral feedback
constant~which can be trivially absorbed in the moment
inertia I c of the crank!.

In the limit Kp5` the angular frequencyȧ is constant,
ȧ5V, and the pendulum does not interact with its enviro
ment. For decreasingKp the influence of the driving mecha
nism on the state (f,ḟ)of the pendulum and vice versa in
creases and atKp50 the angular frequency of the drive
simply uncontrolled. At finiteKp , when the driving fre-
quency is no longer a constant, the accelerationG(t) of the
pendulum suspension@Eq. ~2!# becomes

G~ t !5AH cosa1
e cos 2a1e3 sin4 a

~12e2 sin2 a!3/2 J ~ ȧ !2

1AH sina1
e sina cosa

~12e2 sin2 a!1/2J ä. ~4!

Thus, our model turns from a second-order nonautonom
dynamical system into a fourth-order autonomous one.

A simple geometrical argument gives for the moment t
the pendulum exerts on its driving

M ~f,ḟ,f̈,a!5$mg1~m1ms!G~ t !1ml@~ḟ !2 cosf

1f̈ sinf#%A sina, ~5!

where ms is the mass of the suspension~see Fig. 1!. We
emphasize that the details of our model, such as the pre
form of the driving term Eq.~4!, are irrelevant for the con
clusions reached; what matters is the existence of a pa
eterKp that gauges the nonideality of the parametric pen
lum.

For finite values ofKp , the dynamics of the perturbe
pendulum no longer takes place in a two-dimensio
stroboscopic plane, but involves the four-dimensio
(f,ḟ,a,ȧ) space. Assuming that the feedback control is
fective enough to prevent sign reversal ofȧ, a three-
dimensional Poincare´ space (f,ḟ,ȧ) results from intersect-
ing the orbit with the planea5p. Therefore, the interaction
of the pendulum with its excitation extends phase space w
one extra dimension.

Obviously, as the fluctuations inȧ are small, the new
three-dimensional space is a flat pancake which gets thi
in the ȧ direction with increasing constant of proportion
feedbackKp . Both for the isolated pendulum and for th
perturbed case, a mappingF can be defined that evolve
phase-space points between two subsequent Poincare´ sec-
tions (a5p),

jn115F~jn!. ~6!

For the unperturbed pendulum this is trivially the same a
stroboscopic map at timestn5n2p/V. From now on we will
study the dynamics of the pendulum through iterations of
mapF. Of course, a computation ofF involves integration of
the equations of motion.
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The linear neighborhood of a pointj0 evolves under the
action of the JacobianA of the map,Ai j 5]Fi /]j j uj5j0

. In a
fixed point, the Jacobian has real eigenvalues with the sm
est onel3 determined by the nonideality of the driving. Fo
large Kp the reactionM on the driving mechanism of the
pendulum in Eq.~3! can be ignored, and

l3' expH 2
2pKp

V~ I c2Kd!J . ~7!

If the constant of the proportional driving feedback tends
infinity, the driving angular velocity is a constant andl3
tends to zero. When the driving feedback constant vanish
the restoring force disappears, andl3 tends to 1.

The (f,ḟ)projection of the chaotic attractor atKp
50.59 is shown in Fig. 2~a!. It is very similar to the phase

FIG. 2. Chaotic attractor of perturbed pendulum driven at a
V59.09 s21, and with a coupling feedback constantKp50.59

kg m2 s21. ~a! View of the (f,ḟ)section of the three-dimensiona

Poincare´ space.~b! View of the (f,ȧ) section of the Poincare´

space. The angular velocitiesḟ andȧ are in s21. The finite value of
the feedback constant causes chaotic fluctuations of the ang

velocity ȧ of the driving.
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PRE 62 6401FAILURE OF CHAOS CONTROL
plane of the unperturbed pendulum@3#. The difference is that
the interaction of the pendulum with its excitation results
dynamical behavior of the excitation angular velocityȧ. The
(f,ȧ) projection of the Poincare´ space is shown in Fig. 2~b!.
At this value of the feedback parameter, the chaotic fluct
tion of ȧ is about 6%, which is comparable to that observ
experimentally. A fundamental question is, howev
whether theȧ dynamics constitutes an essential new deg
of freedom of the perturbed pendulum, or whether it
merely slaved to that of the (f,ḟ)pendulum state. To answe
this question, we will study the evolution of a dynamic in
variant with the strength of the perturbation.

As dynamical invariants we computed the three Lyapun
exponents that gauge the average sensitivity to variation
initial conditions along a chaotic orbit from the map Eq.~6!.
The Lyapunov exponents of the perturbed pendulum
shown in Fig. 3. For large feedback parameterKp Eq. ~7!
predicts thatl3 goes to2` as22pKp /V(I c2Kd). In this
case the largest and next-largest Lyapunov exponentsl1,2
approach those of the isolated pendulum. We believe that
‘‘anticrossing’’ behavior of the Lyapunov exponents atKp
'0.15 is the consequence of the well-known Wigner–v
Neumann ‘‘no crossing rule,’’ which states that the eigenv
ues of a real symmetric matrix generically do not cross i
parameter is varied.

From the spectrum of Lyapunov exponents it is possi
to derive the fractal dimension of the chaotic attractor. T
argument is that the integer part of the dimension is given
the numberK of expanding directions in phase space alo
which the measure is smooth, withK given by ( i 51

K l i>0.
The fractional part of the dimension is the ratio of contra
tion and expansion@11#

DL5K1
1

ulK11u (
j 51

K

l i . ~8!

FIG. 3. Full lines: Lyapunov exponents of a pendulum that
teracts with its driving. Dashed lines: Lyapunov exponents of
isolated pendulum~which has a two-dimensional phase space!.
-
d
,
e

v
of

re

he

n
l-
a

e
e
y

g

-

The Lyapunov dimension as a function ofKp is shown in
Fig. 4. It is a striking observation that the attractor dimensi
has already reached its asymptotic value atKp'0.2. From
then on, the relevant embedding space is two-dimensio
and the dynamics of theȧ degree of freedom apparently n
longer has a life of its own and must be merely slaved to
dynamics of the (f,ḟ)subspace. Information about it migh
no longer be needed when controlling chaos. As theȧ degree
of freedom adjusts rapidly to the (f,ḟ)state, it might be
removed altogether by adiabatic elimination. However,
do not know how to do this by using information from a
experimental time series only.

III. CONTROLLING UNSTABLE PERIODIC ORBITS

If no a priori information is available about the exper
mental system, unstable periodic points must be found fr
a registered chaotic time series. For controlling one of tho
it is also necessary to learn the linearized dynamicsA in a
small neighborhood of it. Finding unstable periodic poin
amounts to finding close returns in the time series. A pha
space pointjk that almost returns inp steps,jk1p'jk , is
probably close to a truep-periodic point, especially if a
whole neighborhood ofjk returns inp steps. The linear evo-
lution of points ji in a small neighborhood ofjk is deter-
mined by the JacobianA as ji 1p2jk1p5A(ji2jk), where
ji 1p is the image ofji in the rapidly expanding neighbor
hood of jk1p . The elements of the matrixA can be found
from a least-squares procedure. The matrixA can be used to
approximate the true location of thep-periodic pointfp

fp5jk1~ I2A!21~jk1p2jk!,

where I is the unit matrix. In our procedure we take th
points used for a least-squares estimate ofA from a ball with
radiusr around the nearly returning pointjk . In an experi-

-
e

FIG. 4. Full line: Lyapunov dimension of a pendulum that in
teracts with its driving as a function of the driving feedback para
eterKp . Dashed line: Lyapunov dimension of the isolated pend
lum.
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6402 PRE 62WILLEM van de WATER AND JOHN de WEGER
ment, points within a noise radiusr i,r can be excluded, so
that the ball turns into an annulus. The radiusr must be small
enough so that the evolution of the balls’ contents can stil
considered linear.

A successful quest for close returns needs a long t
series, especially if close returns near unstable perio
points with large eigenvalues are sought. To search for s
close returns, we used the efficient procedures describe
Theiler @12#.

So far, we have just assumed that the least-squares p
dure to find the dynamics in the linear neighborhood of
unstable periodic point always works. As will be explain
in Sec. V there are serious problems with this procedu
Remarkably, these problems are caused by thenonlinearity
of the dynamics that distributes points over phase space
us first describe the technique to control unstable perio
motion, and worry about ways to obtain the needed inform
tion later on.

In the method sketched by Ot, Grebogi, and Yorke,@1#
controlling unstable periodic orbitsf can be done if their
location depends on a parameterq ~for which we will use the
excitation frequencyV), fq5f1qg. Settingq to qn at each
iteration alters the dynamics in a linear neighborhood of
unstable periodic point to

jn115Ajn1qnu, ~9!

with u5(I2A)g, and where from now on we will place th
unstable periodic point at the origin. The quest of the c
troller is for a vectorK such that parameter variationsqn
5K•jn lead to successful control. From Eq.~9! it then fol-
lows that

jn115~A1u^ K!jn[Cjn , ~10!

which defines the control matrixC. For successful control
the largest eigenvalue of the control matrix must have mo
lus less than 1.

A geometrically appealing solution to the control proble
was given in@1# by choosing

K52fu•A/~ fu•u! ~11!

where the contravariant vectorfu has unit length and is per
pendicular to all stable eigenvectorsesi

. The strategy of Eq.
~11! is to steer the orbit onto the space spanned by the st
eigenvectors ofA. The choice Eq.~11! is equivalent to

qn5
lu~ fu•jn!

~lu21!~ fu•g!
, ~12!

where lu is the single unstable eigenvector ofA. Conse-
quently, the control matrixC has eigenvalueslsi

with ac-

companying eigenvectorsesi
and eigenvalue 0 with right an

left eigenvectorsfu and eu2u/(fu•u), respectively. There-
fore, the choice Eq.~11! for the control vectorK completely
eliminates the unstable direction ofA.

This control scheme can be extended naturally to the c
trol of unstable cycles with a longer periodicity. The idea
to execute a control action upon each Poincare´ section, and
not to wait until the full cycle is completed. The technique
explained in Appendix A, with a resulting control recip
e
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which is very similar to Eq.~11!. Similarly, this approach
can be used to enact control at multiple sectionsa i
52p/N,i 51, . . . ,N.

The discrete control action of Eq.~11! assumes that the
very change of the parameterq does not induce a dynamic
of its own. For the parametric pendulum it is not possible
suddenly change the excitation frequency as it implies
infinite acceleration of the pendulum support. In practice,
excitation will not be able to cope with such a change a
the true excitation frequency will lag. This is actually a
counted for in our model, where the parameterq(5V) is the
set point of the driving frequency. It is possible to chan
this set point suddenly.

For the control scheme to work, a trivial requirement
that the unstable periodic point moves when the control
rameter is varied. Thus, by symmetry, the unstable poin
the upright pendulum cannot be controlled in this mann
The upright pendulum can, however, be stabilized by cho
ing an appropriate excitation frequencyV. Acheson and
Mullin @13# show that this principle actually extends to mu
tiple coupled upright pendulums.

An interesting question is how long one has to wait befo
a chaotically wandering orbit is near enough to an unsta
periodic point and control can become effective. The d
placement of the unstable periodic point in the direction p
pendicular toes is proportional toqn . If there exists a maxi-
mal allowed parameter modulationqmax, which is, for
example, given by the requirement that the system may
be perturbed too strongly, control can only take effect wh
a chaotic iterate falls in a stripSof width l u along the stable
eigenvectores . The control scheme of Eq.~11! is based on a
linear approximation of the local dynamics. Nonlinearity w
be felt if the phase-space point is too far away from t
unstable periodic point. Therefore, the lengthl s of the region
Sof effective control is limited by the curvature of the stab
manifold. As nonlinearities will start quadratically,l s; l u

1/2.
If nothing is done to steer the chaotic orbit toward the stripS,
the waiting time before control can take effect for an ar
trary initial condition is inversely proportional to the me
sure ofS. It can be shown simply@1# that the measure ofS
scales withqmax as

mS;~qmax!
12(lnuluu/ lnulsu)/2. ~13!

Accordingly, the waiting timeTw before control can be en
acted scales with the maximum allowed parameter mod
tion asTw;mS

21 .
Soon after@1#, it was emphasized@14# that the quest for a

control vectorK for a given matrixA and displacement vec
tor u is a central problem of control theory. There exists
wide variety of solutions to this problem that lead to succe
ful control. Under certain conditions, a vectorK can be
found for any choice of the desired eigenvalues of the c
trol matrix C @10#. In control engineering, finding the contro
vectorK is called ‘‘pole placement.’’

The choice of Eq.~11! is one of many possibilities, but i
is special because it maximizes the areaSof successful con-
trol and thus minimizes the waiting time before control c
become effective@14#. The intuitively appealing interpreta
tion of Eq.~11! may lead to the erroneous impression that
systems with more than one unstable eigenvector variatio
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PRE 62 6403FAILURE OF CHAOS CONTROL
a single system parameter generically cannot lead to succ
ful control. This is clearly contradicted by the cited eleme
tary result of control theory@10# and by experiments@7#. On
the other hand, the general pole-placement recipe of con
theory is blind to the local structure of phase space. P
placement allows the specification of eigenvalues ofC, but
not its eigenvectors.

IV. USING PARTIAL INFORMATION

If complete state information is known, such as the loc
tion of the unstable periodic points and their stable and
stable eigenvalues and eigenvectors, the control met
sketched in Sec. III will also work for the perturbed pend
lum. This is demonstrated in Fig. 5 where atKp50.59 the
angular velocityȧ of the pendulum is shown while it is
captured in a fixed point. In this case the periodic pointf1
and its eigenvectors were found numerically from Eqs.~1!
and~3!–~5!. As seeds for the Newton procedure used to fi
fp we have used close returns from a long time series@15#.

Not only is the mode of motion associated with the var
tion of ȧ dynamically irrelevant for mostK-values, but we
will also show that information about it is extremely hard
come by from an experimental time series. The question t
is whether control can be achieved by simply ignoring th
mode of motion. Thus, we will try control that is based o
reducedstate space information where only the dynamics
the (f,ḟ)plane is considered and no use is made of theȧ
mode. Of course, the answer is affirmative in the case
large values of the feedback parameterKp , when the inter-
action between the pendulum and its excitation vanishes
the state of the pendulum is completely determined by
coordinates in the (f,ḟ)phase plane alone.

A quantitative answer can be given by considering t
reduced control matrixC̃ which is defined as

C̃5A1u^ K̃, ~14!

FIG. 5. The angular velocityȧ of the pendulum driven atV
59.09 s21 at driving feedback parameterKp50.59 kg m2 s21while
it is captured in an unstable fixed point.
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with a reduced control vectorK̃ which is constructed out of
two-dimensional (f,ḟ)information only with no use made
of the ȧ degree of freedom. In analogy with Eq.~11!,

K̃52 f̃u•Ã/~ f̃u•ũ!, ~15!

where the matrixÃ is formed by writing zeros in the third
row and the third column ofA, with f̃u the contravariant
unstable eigenvector andũ5(I2Ã)g̃, with g̃ the projection
of the displacement vectorg on the (f,ḟ)phase plane.

The result of this information reduction for stabilizatio
of a fixed point is shown in Fig. 6 where the largest eige
value lc of the control matrix is shown together with th
eigenvalues of the unstable fixed point whose stabilization
attempted. In the case of the unperturbed pendulum~at Kp
5`), lc approaches the second eigenvaluels2

of A in
agreement with the eigenvalue of the control matrix for co
trol with full state information. For decreasingKp , ulcu in-
creases, and atKp,0.59 two-dimensional control fails. This
is a surprisingly large value because at this point the dyna
ics of the perturbed pendulum is essentially two dimensio
according to Fig. 4. Apparently, for control to be effectiv
we are forced to consider the irrelevant dynamics of theȧ
degree of freedom. WhenKp is decreased further and th
perturbation of the pendulum becomes more important,lc
tends to the largest eigenvalue ofA.

The control strategy Eq.~15! is the same as Eq.~11!, but
now based on reduced state information. A reduced s
vector j̃ is guaranteed to be perpendicular tof̃u through Eq.
~15!, but may not lie in the plane spanned by the two u
stable eigenvectors. In this case other choices forK̃ than that
of Eq. ~15! may offer better control performance, i.e., small

FIG. 6. Controllability of an unstable fixed point in the pe
turbed pendulum as a function of the driving feedback parame
Kp using reduced information. Full lines: eigenvalues of the fix

point; dashed line: largest eigenvaluelc of the control matrixC̃.
For valuesKp.0.59 kg m2 s21, ulcu,1 and control based on re
duced phase-space information is successful.
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ulcu. We have found this to be the case. However, the des
of these vectors can only be done if the full state informat
aboutA andg is available.

In the case that not all modes can be registered directl
the experiment, it is possible to reconstruct the full st
space from a partial measurement through embedding
control engineering the ‘‘observer’’ technique is related
embedding, but it has a narrower scope@10#. If information
about the eigenvalue associated with theȧ mode is hard to
come by in a direct measurement, it will also be elusive in
indirect measurement through embedding. This is illustra
almost trivially in Appendix B.

V. ESTIMATING PHASE SPACE

If no a priori information exists about the dynamical sy
tem, it is necessary to find in an experiment the location
unstable periodic points and their local linear neighborho
from long chaotic time series. The linear dynamicsjn11
2fp5A(jn2fp) in a small neighborhood of the unstab
periodic orbit fp is then estimated from the evolution o
close points using a least-squares method. For the pertu
pendulum, the matrixA has three very different eigenvalue
that is, the matrixA is near singular. For example, for th
stabilized fixed point at Kp50.2, l1522.0096,l25
20.2896, andl350.1449, with a ratio of largest to smalle
eigenvalue of 14. AtKp50.59 @where the reduced contro
matrix Eq.~14! just becomes stable# this ratio has increase
to 790 as now l1521.7334,l2520.3430, and l3
50.0022.

Although the least-squares approach enables us to a
rately pinpoint the locations of the periodic points, there
several profound problems associated with it for determin
the elements of the matrixA. First, the dynamics in the linea
neighborhoodA must be found from following the evolution
of phase-space points near a close return. Clearly, points
are not very close to the unstable periodic point will expe
ence the nonlinearity of the system. The dynamics along
most stable manifolds is then overwhelmed by the local c
vature of the unstable manifold. Determining small eigenv
ues, therefore, requires close returns and thus long time
ries. Second, if the registered time series is affected by no
the least-squares fit ofA to the neighborhood offp is an
ill-conditioned problem, even in the absence of curvatu
and the smallest eigenvalue is strongly determined by
noise level.

These problems are aggravated in an essential way by
Cantor-like structure of the measure generated by
dynamical system. This structure is clearly observed
the distribution of points near the fixed point (f,ḟ,ȧ)
5(3.0041,6.1932,9.1545) in Fig. 7. We will now quantify i
effect on the least-squares analysis of the local dynamic
jk is a phase-space point that nearly returns inp steps, so that
it is a candidatep-cycle, we determine the local linear neig
borhood from the evolution of nearby pointsji ,

yi5Axi1B

where yi5(ji 1p2jk1p), and xi5(ji2jk), and where the
vector B allows for the displacement ofjk from the true
n
n

in
e
In

n
d

f
d

ed

u-
e
g

at
-
e

r-
l-
e-
e,

,
e

he
e
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If

periodic pointfp . In a least-squares approach forN points
in a ~small! neighborhood offp the minimum of the quantity

(
i 51

N

uuyi2Axi2Buu2 ~16!

is sought, with the solution

A5SR21. ~17!

R is the correlation matrix of thesupportof the least-squares
fit with elements Rkl5( i 51

N xk
i xl

i2(1/N)( i 51
N xk

i ( j 51
N xl

j ,
and S is the matrix with elements Skl5( i 51

N yk
i xl

i

2(1/N)( i 51
N yk

i ( j 51
N xl

j . On Cantor-like supports, such a
shown for the pendulum in Fig. 7, the correlation matrixR
has a highly problematic structure. If we span a phase-sp
vectorx by a componentx1 in the expanding direction~along
the bands in Fig. 7! and componentsx2 ,x3 in the transverse
contracting directions, it is readily appreciated that thex2,3
components are more strongly correlated than thex1 compo-
nent. The result is thatR has very different eigenvalues. Th
near-singular character of the correlation matrix strongly a
plifies errors, for example, errors that are due to the curvat
of phase space or due to experimental noise. This error
plification property is quantified by the condition numberC,
which is the ratio of the largest to the smallest eigenvalue
R.

From a long time series (107 iterates!, we took allN(r )
iterates in balls with radiusr around the unstable periodi
point f1 shown in Fig. 7. The number of pointsN(r ) in-
creases withr asN(r );r D with D51.61, which is close to
the prediction of Eq.~8!, 11 lnul1u/ulnul2u51.56. The condi-
tion numberC(r ) was computed on these sets of points. T
result is shown in Fig. 8 and should be compared to the c
of completely random points, when the condition number
close to 1. As the correlation matrixR is computed over

FIG. 7. Neighborhood of the unstable fixed point (f,ḟ,ȧ)
5(3.0041,6.1932,9.1545) of the perturbed pendulum atKp50.2
kg m2 s21. The local Cantor-like structure of the attractor gives ri
to logarithmic-oscillations in the scaling behavior of several qua
tities that are associated with control.
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areas with an increasing sizer, the singular character of the
measure is more effectively averaged, andC decreases.

The condition number displays scaling behavior, but it
strongly modulated by regular oscillations on a logarithm
scale. The occurrence of oscillations in the scaling proper
of fractal sets is very well known, and was first discussed
Mandelbrot in the context of lacunarity@17#. Lacunarity is a
property of fractal sets that have holes at all scales. A w
known example is the middle-third Cantor set. Imagine
point in the Cantor set that is in the middle of an interv
with length l of which we compute the measurem l . When
the interval reaches out to a hole,m l will not change untill
has grown sufficiently to reach across the gap. Because t
is a geometric progression of holes in holes,m l will oscillate
on a logarithmic scale. Except for strictly self-similar se
lacunarity oscillations are generically only seen in local sc
ing behavior, as they will not survive averaging over t
chaotic attractor. In@18#, precise arguments are given fo
survival of lacunarity oscillations in averages over multifra
tals.

The dramatic effect of the uneven distribution of poin
on an estimate of eigenvalues is illustrated in Fig. 9. T
estimate was made by picking randomly 32 pointsji from
balls with radiusr around the unstable fixed point. Each
these points was iterated according to the full dynamical s
tem Eq.~6!, ji85F(ji). The matrixA that describes the lin-
ear evolution was then determined in a least-squares ana
@Eqs. ~16! and ~17!# with xi5ji2f1 and yi5ji82f1. The
resulting eigenvalues were averaged over 32 such select
For balls containing the natural measure, only the larg
eigenvaluel1 can be estimated with confidence. If the ba
are, instead, filled uniformly, the error in the estimated
genvalues is small. Let us emphasize that in both cases
nonlinearity ofF(j) is the only cause of the error; there is n

FIG. 8. Condition number of the correlation matrixR as a func-
tion of the radiusr of a ball around an unstable fixed point. Th
number of pointsN over whichR was computed increases from 102

at r 51023 to 53105 at r 51021. The oscillations inC are due to
the lacunarity of the measure. The radiusr is normalized such that

the chaotic attractor of Fig. 2 has unit extent in the (f,ḟ,ȧ) direc-
tions.
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noise and there is no uncertainty in the location of the fix
point. The importance of the nonlinearity depends onr, but
not on the distribution of points. With an error amplificatio
of a factor 103, even for large neighborhoods (r 50.1) it is
nearly impossible to find the information needed for contr
Clearly, it is necessary to destroy chaos in an essential m
ner in order to bring the condition number closer to 1.

VI. WAITING TIME

As the oscillations in the scaling curve of Fig. 8 reflect th
local Cantor structure of the measure, they will emerge in
scaling curves of all pointwise quantities. An example is t
waiting time before control, for which it was predicted i
Sec. III that

Tw;~qmax!
(lnuluu/ lnulsu21)/2. ~18!

In Fig. 10 we plot the waiting time before an unstable fixe
point and a period 3 orbit can be controlled. The avera
waiting time was computed in the unperturbed pendulum
randomly sprinkling 512 initial conditions on the phas
plane, iterating each of them 256 times, and then registe
the number of iterates before successful control of the
stable periodic point. For the unstable period 3 orbit we us
control at each of the three cycle elements, as explaine
Appendix A.

In agreement with Eq.~18!, the waiting times have an
algebraic dependence on the maximum allowed param
modulationDV. However, the predicted dependence is on
seenon average. In particular, the waiting time before suc
cessful control of the fixed point fluctuates wildly about i
correctly predicted average dependence. These fluctuat
take the form of regular oscillations in logDV, such that the
waiting time can be as much as a factor of 4 longer than

FIG. 9. Eigenvalues estimated from small neighborhoo
around an unstable fixed point. The radiusr is normalized such that

the chaotic attractor of Fig. 2 has unit extent in the (f,ḟ,ȧ) direc-
tions. A least-squares analysis was done on 32 points picked
domly from spheres with radiusr. The result is an average of 32
selections. Full lines: neighborhoods containing the natural m
sure. Dashed lines: uniformly filled neighborhoods.
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6406 PRE 62WILLEM van de WATER AND JOHN de WEGER
prediction of Eq.~13!. Because cycles with larger period
sample more regions of phase space, we expect that the
cillations of longer cycles are averaged more effectively.

Although the waiting time before control reflects an inte
esting facet of the control of chaos, it is not necessary to w
so long before control can be enacted. With crude knowle
of the dynamics it is possible to steer a wandering orbit o
the target neighborhood@16#.

VII. CONCLUSION

For the weakly perturbed pendulum the idea that con
of chaos can be done on the basis of experimental infor
tion alone simply breaks down. As a weak interaction w

FIG. 10. ~a! Average waiting time~in excitation periods! before
control of a fixed point in the unperturbed pendulum as a funct
of the maximum allowed excursion of the driving frequencyDV,
which is used as the control parameter. For eachDV, 512 initial

points were randomly sprinkled over the squarefP@0,2p#, ḟP
@220,20#, each of them iterated 256 times, after which the num
of iterates before successful control was registered. The slope o
dashed line is the prediction of Eq.~13!. ~b! Same as~a!, but for
control of an unstable period 3 orbit.
os-

it
e
o

l
a-

the environment characterized by a small eigenvalue i
genereric problem, we expect that the sketched route to
ure of chaos control must be a common one. For succes
control we are forced to consider the dynamics of theȧ
coordinate when it has no dynamics of its own. Unfort
nately, there is not a simple transformation that elimina
the ȧ dynamics using the information in an experimen
time series. We believe that it can be done only using
faithful model of the experiment.

Our most important conclusion is the impossibility
learning the needed information due to the nonlinearity
the system and the fractal nature of chaos. It does not he
split the linear dynamicsA over N partial sectionsa i
5 i2p/N,i 51, . . . ,N, and determine the partial matricesA i
for each of them. We have found that the error inA
5A1•••AN now simply accumulates.

It may be that the necessity of including informatio
about the small eigenvalues ofA is due to the control schem
used. The control strategy of@1# and its variants act on the
system at discrete times. In our case this is at each cycl
the excitation. Perhaps it is possible to actN times ata i
5 i2p/N,i 51, . . . ,N, and use the~still inaccurate! matrices
A i such that the resulting control action is stable.

Better estimates of the local linear neighborhood of u
stable periodic points with near-singular JacobianA may be
obtained by estimating the elements ofA using random
modulations of the control parameter. This should result i
more even distribution of points in small neighborhoods
unstable periodic orbits than is given by the natural meas
The location of unstable periodic points may then first
learned from a time series, after which noise is fed to
system in order to determine the evolution of their line
neighborhoods.
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APPENDIX A: CONTROLLING PERIOD- p UNSTABLE
ORBITS

We will describe the extension of the control method
the stabilization of unstable period-p cycles. Another appli-
cation of this extension is to take controlN times ~at a i
5 i2p/N,i 51, . . . ,N) in each excitation cycle, in order to
overcome problems with rapid expansion near very unsta
periodic points.

A period-p cycle consists of p cycle elements
fp

(1) , . . . ,fp
(p) in the Poincare´ section. The control strateg

is to steer the orbit onto the stable eigenvectores
( i ) of the

nearest cycle elementfp
( i ) at each Poincare´ intersection.

Without loss of generality we will describe the principle
two dimensions with one unstableeu and one stablees eigen-
vector.

The linear neighborhood of the pointfp
(1) is mapped onto

that of cycle elementfp
(2) by the partial matrixA1, much as

the partial matrixA i relates the linear neighborhoods of th

n

r
he
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cycle elementsfp
( i ) and fp

( i 11) . The neighborhood offp
(1)

will be mapped onto itself after a complete cycle ofp Poin-
carésections by the composed matrixA(1)5ApAp21•••A1.
In the same manner the neighborhood offp

( i ) will be mapped
onto itself by the matrixA( i )5Ap2 i 11•••A1Ap•••A i 11A i .

The eigenvectors of the cycle elementfp
( i ) then follow

from

A( i )eu,s
( i ) 5lu,seu,s

( i ) . ~A1!

Controlling period-p orbits should be done by adjusting th
control parameter at each of thep Poincare´ intersections, as
the complete cycles have very large eigenvalues.

The eigenvectorseu,s
(1) , . . . ,eu,s

(p) are related in the follow-
ing way:

A ieu,s
( i ) 5lu,s

( i 11)eu,s
( i 11) with lu,s

( i 11)5eu,s
( i 11)

•A ieu,s
( i ) .

~A2!

To facilitate the implementation of the control strategy E
~11!, the matrixA i can be written in covariant notation,

A i5@lu
( i 11)eu

( i 11)fu
( i )1ls

( i 11)es
( i 11)fs

( i )#, ~A3!

where the vectorsfu,s
( i ) are defined as before:fu

( i )
•eu

( i )51,
fu
( i )
•es

( i )50, fs
( i )
•eu

( i )50, and fs
( i )
•es

( i )51. The dynamics be-
tween subsequent Poincare´ sections then is

ji 112qig
( i 11)5@lu

( i 11)eu
( i 11)fu

( i )

1ls
( i 11)es

( i 11)fs
( i )#~ji2qig

( i )!, ~A4!

where g( i ) is the sensitivity to parameter variations of th
cycle elementfp

( i ) . The control strategy now is the require
ment thatji 11 is on the stable eigenvectores

( i 11) ,

qi5
lu

( i 11)~ fu
( i )
•ji !

lu
( i 11)~ fu

( i )
•g( i )!2~ fu

( i 11)
•g( i 11)!

. ~A5!

We have used this form for controlling unstable periodp
orbits of the pendulum.

We note emphatically that thelu,s
( i ) arenot the eigenvalues

of the partial matricesA i . In @5,6# a control strategy base
on these eigenvalues is described. As is evident from@5#,
such a strategy is extremely problematic because the ei
values ofA i may be complex.

APPENDIX B: EMBEDDING

Embedding amounts to usage of the time history of
system in order to reconstruct its full state space. In fact,
has become a customary procedure in control attempt
systems whose instantaneous location in state space ca
be characterized completely. The key idea is that
D-dimensional state space can be reconstructed from a
series of measurementsj( i t) of a single componentj(t)
using delay coordinatesĵ5(j( i t),j„( i 11)t…, . . . ,j„( i
.

n-

e
is
of
not
a
e

12D11)t…. The resulting state space has under certain c
ditions a one-to-one relation with the true state space@2#.

The goal is to construct the full phase space fro
(fn ,ḟn) measurements using the delay coordina
(fn ,ḟn), and (fn11 ,ḟn11). It is instructive to write out the
dynamics of the perturbed pendulum in an embedded s
space. At Poincare´ sectionn the delay vectorsĵn are

ĵn5S j̃n11

j̃n
D . ~B1!

The evolution of the embedded state vectorĵn can be seen by
augmenting the truncated vectorsj̃ back to the full system,

S j̃n11

ȧn11
D 5S Ã BT

B a
D S j̃n

ȧn
D 1pnS ũ

u3
D , ~B2!

where the row vectorB consists of the two row elements th
were deleted from the JacobianA in order to reduce it to two
dimensions, and similarly for the column vectorBT. Equa-
tion ~B2! can be iterated to eliminate the dependence on
angular frequencyȧ of the drive. The result is a complet
description of the full state space in terms ofj̃, but at the
expense of time history,

j̃n115~Ã1aI !j̃n1~BTB2aÃ!j̃n21

1ũpn1~BTu32aũ!pn21 , ~B3!

which is equivalent to the evolution of the embedded syst

ĵn115S Ã1aI BTB2aÃ

I 0
D ĵn1pnS ũ

0
D

1pn21S BTu32aũ

0
D . ~B4!

Because the embedded system Eq.~B4! involves the past
history pn21 of the system parameter, the control strategy
more complicated than Eq.~11! for fixed points or Eq.~A5!
for longer periodicities. These complications were first n
ticed by Dressler and Nitsche@19#. Embedding, therefore
has a price. We believe that embedding is not unavoidabl
experiments. With modern computerized instrumentati
complete information about a system’s state space shoul
obtained readily.

The problem that the small eigenvalue~and associated
eigenvectors! of the ȧ dynamics is very difficult to find from
time series is not cured by embedding. The small eigenva
is now reflected in the small value ofiBTB2aÃi and
iBTu32aũi which determine the dependence ofj̃n11 on
past history j̃n21 and pn21. As this information is now
needed to devise a control scheme, nothing is gained by
bedding.



en

en

R

a

.

.

,
-
t is

n a
ics
c.

v.

6408 PRE 62WILLEM van de WATER AND JOHN de WEGER
@1# E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@2# T. Sauer, J.A. Yorke, and M. Casdagli, J. Stat. Phys.65, 579
~1991!.

@3# W. van de Water, M. Hoppenbrouwers, and F. Christians
Phys. Rev. A44, 6388~1991!.

@4# W.L. Ditto, S.N. Rauseo, and M.L. Spano, Phys. Rev. Lett.65,
3211 ~1991!; R.J. de Korte, J.C. Schouten, and C.M. van d
Bleek, Phys. Rev. E52, 3358~1995!.
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